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0 In a previous report 4.31.* details of the analysis of a curved dielec-

tric radome using geometrical optics were considered for a poiit 3ource. Ink

this report, we first consider the transmission of a spherical or plant wave

through a curved dielectric interface. The transmitted field is propor-
tional to the pyoduct of the conventional Presnal's transmission coefficient

and a diveigence factor DF, which describes the cross-sectional variation
(convergence or divergence) of a ray pencil as the latter propagates in
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"\ e trmnsmitted region. The factor DF depends ou the incident wavefrout,
the curvatures of the interface, and the relativu indices of the two media.
We Xive ezpllctt satttx formulas for calculating DY, illustrate Its physical

significance v ea *amples, and point out an erroneous solution in the
recent literature.

Next, we st4-the transmission of a spherical electromagnetic vawe
through a dielectric shell. The two surfaces of the shell are spherical
(either concave or convex), and their centers are arbitrarily located in
relation to the source point. The field solution determined by the
geometrical optics theory is given in a simple closed form. Special
attention is given to the lens effect of the dielectric shell which
converts the incoming spherical pencil into a focusing pencil.

Finally, we preeent extensive numerical results on arrays a! point
sources covered by practIQal radomes.
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PAaTIACT

4 In a previous report I5], details of the analysis of a curved dielectric

radaoma using gSomtrical optics were considered for a point source. In this

report, we first consider the transmission of a spherical or plane wave

through a curved dielectric Interface. The transmitted field is proportional

to ,he product of the conventional F,esnel's transmission coefficient and a

divergenr4 factor DI, which describes the croas-sectional variation

(convergence or divergence) of a ray pencil as the latter propagates in

the transmitted region. The factor D? depends on the incident vavefrout,

the curvatures cf the interface, and the relative indices of the two media.

We give explicit matrix formualas for calculating DY, illustrate its physical

significance via examples, and point out an erroneous ooluticn in the

recent literature.

Next, we study the trancmiasion of a spherical elect•xoagnctic vwve

through a dielectric shell. The two surfaces of the shell are spherical

(either concave or convax), and their centers are arbitrarily located in

relation to the source point. The field solution determined by the

geometrical optics theory is given in a simple closed form. Special

attention is given to the Lens effect of the dielectric shell which

converts the incoming spherical percil into a focusing pencil.

Finally, we present extersive numerical results on arrays of point

sources covered by practical radomes.
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I. INTRODUCTION

Many practical antennas are covered by radoues, whose effects on

the antenna radiation are of considerable importance, especially in

today's hijl.-perforuance radar/communicaticn systems. In the past

quarter of a century, several stAndard analyses have been devised for

analy~ing radoce effects. None of them is exact, and Improvements are

always needed. The present report described an effort in this direction,

A typical radome problem may he stated as follows. Let an aperture

antenna A, for instance a horn, a slot, or a conformal array, radiate a

known field (r) in free space (see Figure 1). k protective shield or

radoee I is placed around antenna A. The proolem is to determine the

radiation field i for the composite structure, i.e., the antenna A

radiating in the preqence of the radome. This problem has received a great

deal of attention from nany researchers during the last two decades, and a

so-called "best. available" method for attacking this problem appears to

have emerged. A brief description of this method is given below.

(a) In the vicinity of E, the incident field V is not a ray field

(locally plane wave). To circmvent this difficulty, let i1 b-t reaolv-,d

into a spectrum of plane waves, namely,

Si(r) T dk X dky W(k) ik(1.1)

060 J dx Jdy Er)e(1.2)

Here, • - (k X,k yk ) is the direction of propagation of the plano-wave

"spectral component. The spectral wave number in the z-iirection,



•2 E (2)

E

(a) free space (b) radome environment

Fiaure 1. Antenna A and radome E.

F1A

S~Figure 2. Two choices of incident dire.ctions: Al and P1.



/2 2 2
,,.. C K + k y (.3)

may be real (homogenous plane wave) or imaginary (inhomogenous plane

wave). The weighting factor ý(k) is the amplitude of th.e plane-wave

spectral component propagating in the direction t.

(b) For etch plane-wave component, a tranomission coefficient matrix

0 (t) for a flat dielectric slab can be obtained from any staudard text on

EM theory. The subscript zero of 10 indica-es that it Is derived from the

assumption of a plane-wave incident field. The transmitted field •t(7) at

point 2 on the outer surface of E is calculated from the formula1" 4.
(2)- dkx dky T0 (•) e(g) eik* .(1.4)

(c6 Once It( 2 ) is known for all points on the outer surface of Z,

equivalent surfoce current sources (1(2), ý(2)) can be determined. The

convolution of the source with the Green's function gives the desired

radiation field -A,.ch is expressible as

I r) I4a i1.5)
~(~)(fl 1 + 2(1)

outer E

The approach described above is of course theoretically sound. However,

its faithful execution is impractical because of the extremely laborious

numerical integrations in (1.4) and (1.5). In the well-quoted analyses

by Paris [1] and Wu and Rudduck [2], the numerical integration in (1.4)

is avoided by approximating the transmitted field at point 2 by
i r

((2) 0 0 4t) 0 e (.6a)

where the incident di-nction is determined by

3
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0 actual ray direction Al, or the direction P1 of the

Poynting vector of ti (Figure 2). (l.6b)
IJ

Note that the 4pproximation in (1.6) is to describe by a plane wave.

Since the radome is in the near zone of the antemna, this plane wave

. approxination for Pi described in [1], (2] does not seem to be a good one.

In the present report, we approach the radome problem from a different

viewpoint. Instead of decomposiug the incident field V Into a plane wave

spectrum, we approximate the finite-sized antenna A in Figure 3a by an

array B in Figure 3b. Each elem.ent in array B radiates a spherical wave.

Those spherical wave constituents, transmitting through the radome E, are

superimposed to give ride to the desired radiatiou field i in the far zone.

Thus, the key step in the present approach is to determine the transmission

of a spherical wave through a curved dielectric shell.

We shall apply geometricsl optics to solve the transmission through

the curved ridome. Specifically, we firat study in detail the different

aspects of refraction at s. single curved dielectric interface; second, we

analyze the behavior of a spherical dielectric shell; and third, we apply

our theory tc various practical radomes.

4



Figure 3. An aperture antenna A inside a radon. is approximnated
by an array B. Each point source in array B radiates
a spherical wave.

r23

ro I Pa

01 RECTION A\\

.PO

Figure 4. Transmission through a dielectric shell due to incidence
from a point source at P.



II. DKSCRIPTION4 OF PAOBILJ

The geometry of the radome problem under consideration is sketched

in Figure 4. A point source at P0 produces a spherical wave vhich goes

through a curved dielectric shell trlh nonuniforT thickness. Ray

techniques are used to determine the field at point P 3 on a given surface

outside the shell. First, let us describe the various elements involved

in the problem.

Coordinate Systems and Time Convention. The main coordinate system

is the rectangular system (zy,Z), whose origin it chosen at the source

point P0 and the z-coordinate is in -.e direction of the beom uimxtium

of the antenna. Other coordinate systems at points Pl. P2 and P3 along

the ray are defined later. The field is time-harmonic with the time

"fActor exp(+Jwt) which is suppressed throughout.

Source. We assuse that the source has a well-defined "phase center"

at point Pop the origin of the coordinate system (x,y,z), and radiates

a spherical wave denoted by (61, Pi). If the antanna is an array of point

sources, it is necessary to consider each element in the array separately

4 and superimpose their final fields at the observation points.

Dielectric radome. The radome is a dielectric shall with nonuniform

thickness of relative diele.-tric constant c O f/t0 or refraction index
"r 0

n - V7, and is bounded by the inner and outer surfaces r and Z
r 1 2

Srespectively. The tnner surface E1 (near the source) is described by

the equation:

z - f(x,y) , for a1 < x b1 and c 1 < y < d1  . (2.1)

The outer suz-face is given by the equation:

6
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a ". f 2 (x,y) , for a2 < x b2 and C2 < y < d2  ' (2.2)

It is not necessary to ltnow the waalytical fors of the functions f 1 (x.y)

and f 2 (xy). In computation, only a set of discrete data points

(Nnynfa) with n w i,2,..., s is needed for the description of f(f 1 or f 2 ).

These points are fitted by a cub.c spline which gives automatically first

and second partial derivatives of f, i.e., Wf/ax, ?f/Dy, 32f/ax2 , a2f'axay,

2 2"and 3 f/3y . There are two requirements for the cubic-spline fit:

(i) the data points can be distributed over a randml grid, but they muset

be dense enough to doiscribe th,, fine details of 1(Z1 or Y2); (ii) the

domain of the data points (a < x,< b and c < y < d) most be saomhat

greater than the area of E in which the incident ray Is expected to

intersect the radome.

Observation points. Observation point P3 is located on a preapecified

surface E3. which can be either one of the following two types:

(i) Spherical E3 witb center at V and an infinLitly large radius.

In this came, P3 is in the far field, and the field at P3

calculated by tý,e ray technique is the final result.

4 (it) Planar E3 which is just outside the radome and notrmal to the

z-,axis. In th;.s case, we have to integrata the field on :3 to

obtain the fat field.

In later calculations, ws use mostly the spherical E-3 in (i).

7



111. FIULD SOLUTION NY G37-UMICAL OIPTICS

For a given incideat field (fI, i) generated by the source at point

P0 (fig. 4). the asymptotic oclution of the field at point P3 is deter-

mined using &eo*metrical optica (3], [4). The method of solution Is

described below.

A. Method of Soautio

Consider a ray in direction (0,.) extending from the source point P0
to the point P 1 on El1. The source region (Rtegion 1) is hmeoge-naous and

isotropic; hence, t'-- ray is a straisht liue along the unit vector ro.

First, the distawe r 0 1 is found aril the coordinates of point P1 are

determined. Then the unit vector N1 nermal to the surface E1 at point P1
I1 1

is found (Figure 3). The plane of vectors r., and N1 establishes the

incident plane. The angle between those two vectors id the incident

Iten&le Ml Using Snell's law, the refraction angle m 1 is obtained, which

establishes the direction of the tranmaitted wave, rl., in legion II

(dielectric). The ray in Region 11 is a sti sight line along the unit
""i "• a ) a•;.•

vector r 1 2 . Three coordinate systems (x1,ylr 01 ), (url v and
"t It I

x 1,yl,r12), with common origin at poiut Pl' are then established.

They belong to the incident ray, the surface E1, and the transmitted

ray, respectively.
4 ~The incident field (i~

The ncidnt feldis split into a normally polarized field
(1n-vactor norml to the incident plant at P and a parallel

polarized field (ji sin) The transmitted fiel.d at point P1 is obtained

as follows:

Itn rn tin Itp I itS
I 1 ' 1 12 1



A,

figure 6. Coordiniate systeas for refraction at surfaceE,

9P

A '%



1 1 12. ' ,i.

in whithn And tp are tranumi•euon coefficients for the normal and

parallel polarized italds. respectively,

r t2 Y cos , cos a1
Sa -,, --V I an

1 1t + Vi a. 0Y coo a coo at

0 11

+Z coo at Cos at

S2 Z o . c-- (3.2)
S1 + V Z0 coo aci U coo, "

, ,r ' 1- 1 V -- A- -2"' nt.. n F

Note that the subscript 1, in I for example, signifies the field

evaluated at point 1.

The transmitte* field at Pl is incident on El at point P2. Coordinates

of this point cau be found from the knowledge of the coordinates of point

P and the transaitted ray direction r 11 . The field values, in goin fr•oe

P1 to P2' undergo some change which is dependent on the divergence of the

ray. Thus, we have

OF "a -Jkr 1 2 it (33)
2 * D 12) 1(3)

in which k - nk is the wave number in the dielectric and DY12 is the

0 1

divergence factor for the pencil of rays travelling from P1 to P2 in the

. dielectric. It is given in [3), as

D1I -1/2 .- 1/2DF12 - (I + qI r1 2) (I + q 2 r 12 ) (3.4)

10



in which q and q aI are the principal c,.rvatures (invrso of the radii

of curvature) for the ray pencil in Regic'n It. They are found from the

curvature matrix of the transmitted .!ay at point Pl" The matrix itself

is found from a formula involving the curvature matrix of the incident

ray and that of the surface E1 at point Pl. The curvature matrix of

the transmitted ray pancil at point P1 Is also used to find the curvature

matrix of the ray at point 72 incident upon the surface 2"

Raving the field incidast upon S.2 at point ?20 the ray direction r12,

and its curvature matrix, we can proceed, in a manner similar to the

transmission through £1, to find the fi(iLd transmitted through t2 Ct P2

(Figure 6). Thus, a unit vwctor N2, normal to 12 is obtained, and

together v..th r 1 2 defines the incidence plane at point PV. The incidence

angle a 2 (cre a2 ~2 r 12~ )is then calculated. Again, Snell's '&&w ist

invoked to find the refraction angle x2 at P This angle specifies the

ray direction r 2 3 in Reglon In (ou.s-id- the radome). Thrwe cocrdinate

systems (x 2 ,y 2,r 2 ), (u 2 ,.,t 2 ) and (x,.y 2 ,rZ 3 ) with commn origi e:

point P2 are then IntroduceJ.

The fiel4. Wi) iriiat~ upon I at P is resolved into parallel

and normally polarized fijid•, from which the transmitted fields are found

an follows:

r XItn
't2 2 2I 2 O 23 2

tn p -0in t;)Ht -t H 1 en r(352 2 2 ~ 2 Z 2 23



in which

ft I coo a 2
2 1  + •" 2 n cooe k

t
- 2 coo a 2tv - .- t V - ' (3.6)
2 1+Vp2 2  cogn a2

The field at observation point P3 is then found from the transmitted field

at P2, such that,

3 (DY2 3 ) ,-kOr23 t (3.)

in vhich

II -1/2 2IIi31/2DF23 - (1 + q1  r 23)' ( 2 '23) (3.7b)

and q II and qIII are the principal curvatures of the ray pencil in

Region I11. They are obtained from the curvature matrix of the

* transmitted ray at point P2. This matrix is obtained from a formula

already mentioned in connection vith transmission throuph I1 ' For

a typical factor in Iqs. (3.4) and (3.7b), the following square root

convention is used:

{ +I:l: if f is real
f. / 11 +/'-qr- (3.8)

+Jlfl, if f I&imaginairy

It should be mentionad here that we have ignored multiple reflectior.s

in the dielectric radome throughout our analysis. Details of the analysis

way be found in [5).

We now sumarize the finsal results obtained so far. The point

source at P0 (figure 4) radiAtes a spherical wave described by

12



-jk~rAA

-Jkor

[(? co4coe - Q eli)z + (P minkosee Q coe)y - P minOle
(3.9a)

y. rrxil (3.9b)

whsre (rg.O) are spherical coordinates with origin at P0. The pattern

function p(,$O) and Q(0,0) in (3.9) are given. At point P, (figure •).

ve decompoee the field into two co •ents in the directions of (xIyl), i.e..

%. *Zi 1 8, 1  ( )i~ ̂ 0 011 (3.10)

At the oieervation point P31 we express the field an follows

3 (.2 + t;3 y2,y2 , ,1 aOr23 x . (3.11)

The two coepoamnta of E3 in (3.11) are found from the matrix equation

A pp^i.t a P(i.^tl ji
E t x t tpt2(a &P1  nt t2 x 1

3 2 2 2 -F"

""Y (D•lZ)(D1 2 3)a- 1J2jjLPU;'zt, ,L.c; , t

(3.12a)

or more compactly.

-jko(nr 1 2 + r3)
-- (DI) e ' i (3.12b)

13



to (3.12), a is the retraction Lode" of the dielectric, IL0 it the

free-space Wave, WAbor aM t, t, tP a tp are the Gorual and paralale

transmissmion cooff Icintse at points ?V a"•4 P2, respectivQ17, as gtven

la (3.2) and (3.6). The two 4itwrgeoce factors are given ito (3-.) am

(M,?b). Their calculcltoss cmmatit•t•e the major effort of the proeest

soluation.

14I
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IV. REiRACTION AT A CUX•VF• DIELECTRIC IWNTFACE

A. Introduction

The reftaction at a dielectric interface it of fundamental importance

in electromagnetic theory. If the interface is arbitrarily cur" td, the

only available solutiot, Is the ore deriied by the geometrical optics theory

(GO). Such a solution consists of two main ingredients: the WVll-knowM

Ftesnel formulco for the transmission and reflection coefficients (due to

A. J. Freanel in 1823) and a so-called "divergence factor DF." Surprisingly,

the solu,"ior of DF was derived an early as 1915 by A. Gulim:rand (61, but

its applicition vas no, widely recognised in the electromagnatic/optical

community untAl very recently. In 19'2, Descheps (3,. [4] rederived

Gullstrand'" result by isaing "curvature matt-ices" for describing curved

surfaceb/wavefronts. thus resulting in greater clarity and simpler

rc~Mputat lo&s.

In this chapter, we supplement Deuchamps' results by giving

explicit formulas for calkulatiog various curvature matrices and by

illustrating the physical significance of DY via analytical and numerical

examples. Another motivstion for the present work is to compare our

solution with the one described by SnyJer and Love (71-[91 for the same

problem. It is shown thqt these two solutions are not in agteement.

We believe that the Snyder-Love solution ts incorrect.

15



B. Final Solution for the Refracted Fields

We begin with a statement of the problem. Two infinite dielectric

media with refraction indices n1 and n2 arz separated by a curved inter-

face L (Figure 7). which is described by

i E: z - f(xy) .(4.1)

The origin of the (x,y,z) coordinates is at the source point 0 in medium

1. The source emits a spherical wave, whose electric field at an obuar-

vation point r - (r,e,ý) is given by (for exp(jwt) time convention)

-jk 1r
E (r) - [eP0,) + wO,] (4.2)i r

vhere kI - 2r/X1 - nlw/c, and (r,0,0) are the spherical coordinates

with origin at 0. Ihe problem at hand is to find the transmitted field

E at a typical point 2 in medium 2, and the reflected field E at a

typical point 3 in medium 1.

We attack the problem by the geometrical optics theory (GO) [31, [4j.

Referring to Figure 7, let us concentrate on a typical incident ray in the

direction of z1 emanating from the source at 0. The "outward" normal to

surface E at the refraction point I is N. The plane defined by the ray

01 and N is the piane of incidence. With respect to this plane, we resolve

Aiand parallel component V We introduce a scalar u such that

Ei , for perper~icular polarizationui=- (4.3)
4I , for parallel polarization

Similar decomposttions and notations apply to E and . Then, the final

solution derived from GO has the following form

16
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ut (2) - (F)2 T ejkl2 bU(1) (4.4a)

ur(3) - (DF)3 R e ut(1) . (4.4b)

The various factors in (4.4) are explained below: T and R are the well-

known Fresnel's transmission and reflectisn coefficients (for a planar

interface), given by

T l+----y (4.5)

where I n(ccs a 2 /cos aI) , for perpendicular polarizetion

n (cos a2/Cos 1 , for parailel polarization

n = (n 2/n 1 ) 1 relative refraction index.

The incident angle a and transmitted angle a2 are related by the Snell's law

sin a sin a (4.6)
2 n 1

For n < 1, a critical incident angle m exists, where

sin a n , if n < . (4.7)

It a > a' a2 defined in (4.6) becomes comply.. and the simple ray picture

shown in Figure 7 is lost. It is not inmediately clear how the present CO

solution must be modified. Therefire, in this paper, we exclude the case

ac > ac when n < 1. The factor (DF) 2 in (4. 4a) is the so-called "divergence

factor" J3] of the trausmitted ray pencil at point Z in reference to point 1.

It is given by

18
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(DF)2 - 1 1 (4.8)

/( + (b/R21' /1 + (b//R2

Here (- 2 1 ,R 2 2 ) are the two principal radii of curvature of the transmitted

wavefront passing through point 1. The sign convention of R2 1 (or R2 2 ) is

as follows: R2 1 is positive if the transmitted rays in the corresponding

normal section are divergent, and R21 is negative if the transmitted rays

are c-onvergent. The square roots in (4.8) take either positive real or

negative imaginary value. Thus, (DF) 2 is positive real (no focus between

points 1 and 2 on the transmitted ray), positive Imaginary (one focus

between 1 and 2), or negative real (two foci between 1 and 2). The factor

(DF) 3 in (4.4b) is the divergence factor of the reflected ray pencil at

point 3 in reference to point 1. It is given by

(DF) = 1 1-- (4.9)
/1 + (c/R 3 1 ) Tl + (c/R 3 2 )

The determination of the four principal radii of curvature (R1R2RR

is the key to the present problem. In Section IV.C, we give &a' explicit,

step-by-step description of their determination.

In summary, for the refraction problem in Figure 7, the final solutiors

for the fields of the transmitted and rcflected rays are given in (4.4).

This solution is based on GO. It is valid for high frequencies, and for

all cases, except when total reflection occurs (n < 1 and al > a

1 c

19
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C. Calculation of Curvatures of Refracted Wrvefronts

For an arbitrary iuterface Z and an arbitrary incident ray 01.

(Figure 7), the c...iculation of the four radii of curvatures ( 1 ,R 2 ,R 3 1 ,l 3 2 )

is not a simple task. In this section, we present a eyutematir, and explicit

procedure for doing this calculation.

Coordinate s'ysts at point 1. Consider a ray leaving the source at 0

in the direction (9,.), which intei'sects the surface I described in (A.1)

"at point 1. The distance a is determined from the non-linear equation

a cou 0 9- f(x - a sin e cos o, y - a sin e ain *) . (4.10)

The uitdt vector in the direction of the incident ray is

2- x sin 8 coo 4 + y 8in e sin f + z cos 8 (4.11)

The unic normal N of surface E at point 1 is

N (-fx x -f2 + X2 ) (4.12)

where h (l + f 2 + f 2)1/2, and f for e"aple, is the partial derivative

of f(x~y) with respect to x. By definiaC A positive, we have chosen N in

the forward direction wich respect to tho incident ray. Vectors a and N

define the plane of incidence. At point 1, we introduce four orthonormal

base vectors:

(x 1 ,y,9 z1 ) for the incident ray 01

(x2,y 2 ,z 2 ) for the transmitted ray 12

(x 3 ,Y 3 ,z 3 ) for the reflected ray 13

(u,v,N) for the surface I

20
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We choose

"YI " Y2 3 * V " ,8 (6.13)

- a unit vector notual to the plane of incidence

Then it follows

u - vKN • Y0  for n % 1,2,3 . (•.j)

7he incident, tranmitted, and reflected rays are respectively in the

directions

S1 a u sin a1 + N Cos a1  (4.15se)

z 2 - u sin a2 + N cosg 2  (4.15b)

a - U sin a " N Cos a (4.15c)
:3 u ~c 1 -tc

where

sinoaan sin 1  , O(QG 2 -w/2 . (4.154)

K Note that, becausQ of the particular choice in (A.13), both a1 and a2 are

* always positive, and have values in (Ow/2).

Curvature matrix of surface E. At point I on surface E, the following

two vvctors lie in the tangent plane of the surface:

SI x + f x (4.16a)

ly y + f Y (A.16b)

21



where (x,ys) are evaluated at point 1. With respect to tho base vectors

U lxr ly) the curvature matrix of E is given by (101

rs1G -f f -1 a ?P

- 2 (4.17)

where =+(l + f 2 + f2)1/2
x y

K -1I+fj 2  Fl- ft~ 1-1+f2
E1

1= -- 1 +fx f -f -1 f fy1

All (x,yz)'s are evaluated at point 1. Now we transfer the curvature

matrix with respect to (r xrly to that with respect to (u,v), namely,

-1 -(.8Qr A QA(4.18)

where

r x~u r x"V

A=

L ly eJ

It may be shown (101 that a principal radius calculated from (4.17) or (4.18)

has a positive (negative) sign if the normal section of the surface bends

away from (toward) the normal N. For example, if E is a sphere with radius

P and the normal N points away from the sphere center, %a have

+P 0

C Q - (4.19)

22
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We note that the present sign tonvieAon for the surface curvature is the

same as that used in [41, but opposite to that in [3), [101.

Curvature matrice of wvefronts. The incident we-tfrout passing

through point 1 is spherical with a radius a. Thus, its curvature mmtrix

Q1 vith respect to base vectors (xi,;y). or any other orthonormal base

vectors, is

-1

Q, a (4.20)
0 a -1

The curvature umtrices of the transmitted and reflected vavefronts passing

through 1 are expressai vith respect to base vectors (..,y 2), and (x3 ,1 3),

respectively. They are denoted by Q2 and Q3 " The solution of Q2 is found

from thm following matrix equation [4):

n B Q0 B 3T + (n Cos a - cos a Q (4.21)

where

L [ v Cosa"0

23
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T (4.22)a
33 3 33 Q1 1 1 2(co a 1 ) (4.22)

where

x3 .u 3.v -coo Q
83 a- .

Ly3u Y3.

Principal radii of curvature of refracted vavefronts. Once matrices

Q2 and Q, are deterained from (4.21) and (4.22), they may be 4iagonalited

in a standard manner to find their vigenvecuore (principal directions of

the wavefront) and their eigenvalues (principal curvatures) 110). In

particular, the principal radii of the transmitted wavefront (R2 1 ,R 2 2 ) are

the roots of the following quadratic equation

1 1
S-2 (trace Q2 ) + det, Q2 a 0 (4.23)

if Q in (4.23) is replaced by Q3 , the to roots are the radii (R3 1 ,R 3 2 )

of the reflected wavefront.

4
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D. special Case: Spherical Interface

To illustrate the results obtained in the previous two sections,

let us concentrate on a special case in which the interface E is spherical

with radius 101, as shown in Figure 8. Following our sign convention, the

radius of curvature of t is

I+Iol , if r is concave when viewed from tho source (Figure 8f)

V-iol , if E is convex (Figure 8b)
(4.24)

Without lose of generality, we assume that the incident ray from the source

at point 0 is in the direction (0.0 - 0). The plane of incidence is then

the x - z plane. Making use of the formulas in Section IV.C, we find that

the principal radii of the ttanmitted and reflected wavefronts passing

through point 1 are

2 [1 2 1
R2  (n coo c 2 ) a coo a +- (f Cos •a coo a1) (4.25o)

R + L (n con - cos a (4.25b)

-l

'0R [1- p _2 (4.26a)

R32 [ 2 coo a (4.26b)

It can b*e shown that R21 and R 31 are the radii of curvature of the normal

sections in the x - z plane (plane of incidence), whereas R2 2 and R32

are those in the orthogonal directions. Since in general R21 R l2 and

R31 R 32, the refracted and reflected pencils are astigmatic.

25
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Figure 8. Refraction at a spherical dielectric interface.
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(A) Norml incidence. For a 0, (A.25) and (4.26) become

-1

121 A R 22 n" - • (4.28)

Thug, for normel incidenct. both refracted penci. ha-,; spherical vevefronts

(no longer astigmatic). The relation in (4.27) may be raarranged to e~ad

n + n (4.29)R21 a

which is the wall-k".ron lene aquation in optics. (See for example

Eq. (40-14), p. 678 of (111.) Note the correspondii-' notatiotis used in (111

and aere: n - 1, n' - n, a - o, a' - (-R 2 1 ), and R- (-o).) The divergent

iaxcid ,nt pencil from a point sour-a is converted - d convergent tranmitted

pancAL in medium 2 when R21 < 0. This occurs when

a > P 0 (4.30)t* -nj

If P > 0 (concave dielectric intarface shown in Figure 8e), thic is posaible

it n - (n 2 /n 1 ) 1. If P < 0 (convex dielectric interface shown in figure 8b),

this is possible if n > 1.

(B) Convaris•- with Synder and Love's reasult. In a recent irticle (7],

Synder and Love consider the proble, sketched in Figure 7 for an incident

plane wave (source distance a - - in Figure 7). Their final result is in

disagreement with ours. To show this disarremwnt, let us concenttate on

a simple case (Figure 9): a concave, spherical, dielectric interfaco is

illuminated by an incident plane wave wh.ch is given by

27
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•-Jk ly
S(X,y,) a a. (4.31)

Me problem is to find the high-frequency solution of the refracted Lelds

along the y-axis. Moed on CO, our solution is given in (4.4), (4.5), (4.8),

(4.9), (4.27), and (4.28) with a - -. Using the coordinate system in Figure 9,

the trAnsmitted and reflected tields are

-t 1 2 • = v > 0 0!.32a)

+ A)L ( n [i)
JkJ

1 1 1- n Jkly
"E y0 7 I-- e •. y <0 . (4.32h)LI0,,0 - (2lYl/o•j 1 +-n-y

The factors in [ ] in (4.32) a-e divergence factoi4. The intensity or power

deonit- of the incident field on the central ray (along x - z - 0) is given by

i - ke{y.(E 1  Hi)x - (nl/120W) watts/m2  (4.33)

which is independent of y. This is due to the fact that the incident field

is a plane wave ind All incident rays 3re parallel. The intensity of the

refracted fluid on the central ray does vary with y, namely,

i t(v) 2•T

i n + - y > 0 (4.34a)

1i + n )~J

Ii tI[•J 1I - 1 ' y<0 . (4.34b)

At the focal point of the reflected pencil v * -p/2 in medium 1, the intensity

I Tr in (4.34b) predicted by the present GO becomes infinitt as expected. For

the same problem sketched in Figure 9, Snyder and Love's solution is given

29



in Fqs. Q29) through (3/', of (7]. For the case of normal inidence

(CL = 0) and central ray (x - z - 0), Snyder and Love's solution reads
ti 2LOyO >> 2 >kz

S(:• j ,'O) 2 >- y > 0 (4.35a)

I - a jk ly""+- z n e , y < 0 (4.35b)

which Phould bv compared with our solution in (4.32). We note that

(i) divergence factors (DF) 2 end (DF) 3 are missing in (4.35), and (ii) the

propagation phase factor expk'-Jk2Y) is missing in (4.35a). Thus, we believie

that (4.35) 's incorrect. Furthermore, for each incident ray (fixed a ).

Snyder and Love define a "power transmission coefficient T SL by

(Eq. (35a) of [7])

1- (4.36)

SL

t-s may be seen trom (4.34h), the intensity Ir is, in general, a function

of positicn (x,y,z), because of the divergence/convergence of the reflected

ray pencil. Then, TSL when calculated correctly is also a function of

positioi,, and does not have the asual significance assoc4.ated with the

"power tr nsmiceion coefficient."
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R. AumericUl Results ond 0lscuesioL

For ',he ret~dction problea sketched in Figure 7, the firal solution

t
for the transmitted field u into medium 2 is given in (0.4a), when

the incident field is gien in (4.1). in this sectioo, we present some
t

numerical results for u for various intkrfac.as and source lcations,

We ccnsider three types of itnterfaces: the spiieiUa1 incavface

described by

(Z/X1) I - [ N -(x2 + V2 M/2]1/2 '4.37)

the paraboloidal interfAce described by

2 2 2

(z/X 1 ) - (x2 + y )/2x1 , (4.38)

cnd the hyperboloidal interface described by
(x+2 / 2 1 1/2

1 [ + 1 2 (4.39)

where X is the wavelength in medium 1 in which the source is located,

For easy com•&rison, we have chosen the above interfaces such that they

all have the FAaae curvature in the axial diceetion 'Figure 1i). There are

six source locations, indicated by numerals inside a small circle. When

the source is at location 1, for example, medium 1 is on zhe right aad

mediuir 2 on che left, and the interface is concave. The source is assumed

to be y-polarized. We calculate the transmitted fieAd in the E-p1ane

S(plane normal to x) and f-plane (plane normal to V). In these two planes,

the incident field Is assumed to be

31
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-Jklr e8 1 , -p lane

(r) (4.40)
ly 1 , H-plane

Thus, ia the E-plane, the i-vector is parallel to the plane of incidence;

whereas in the H-plane, the I-vector is perpendicular. The observation

point 2 is in medium 2 (Figure 7) with distunce b * - (far zone).

We calculate the normalized far field defined by

- K-field when n, 0 n2

-i(2). E-field when nj - n2  .

Substitute (4.4a) and (4.40) into (4.41). Under the condition b * -, we

have

EN , R b÷- (4.42)
a 21 22

Here a is the distance between the sourca and the interface along the

incident ray, and T is the Fresnel's transmission coefficient given in (4.5).

The factor 2R22Ri is the radius of the Gaussian curvature. In presenting
21 22

the numerical results, we plot EN as a function of (, where e is the polar

angle of observation point 2 measlured from a line parallel to the z-axis

and passing through the source point. The relative index n - n2/n

is always set at 2 (transmission into a denser melium).

Concave spherical interface. Figures 11 and 12 show the E- and H-plane

ar-field pattern EN as a function of 8. Note that the field strengths

increase as the source moves closer to the interface (smaller a). This

is mainly due to the fact that EN is inversely Iroportional to a, according

to (4.41). The Gaussian curvature A21R22 decreases with a,, but not enough

to offset the factor (1/a) in (4.41). For source 3, which is at the center
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of the spherical interface, all of the incident rays are normal to the

interface. It can be show that R2. - '22 - a. This, Um calculated

from (4.41) is equal to T, which is 0.667 for the present case of n - 2.

Of particular interest in the f-plane pattern of source 1 shown in Figure 12.

Note the marked asyimmtry in the far-field pattern which is due to the

asymetry of the surface with respect to source 1. Figure 13 shows the

variation of the axial far field when the source is moved along and

parallel to the s-axis. It shows clearly the increase of the field as

the source moves closer to the interface.

Concave paraboloidal interface (Figures 14 and 15). The far-field

patterns for the concave paraboloid are quite similar to those for the

spherical case. However, the pattern variations are more pronounced.

Concave hyperboloidal interface (Figures 16 and 17). Note that the

far-field pattern due to source 4 has a dip instead of a peak in the

axial direction. This is in contrast to the situations in Figures 11, 12,

14, and 15. There is another fact worth mentioning. Because of the choice

of the sine axial curvatur'e for the above three interfaces, the axial field

is the same for alY. interfaces when the source is at 2, 3, or 4. However,

for source 1, which is displaced from the sysmetry axis, the normalized

axial field EH($ - 0) increases from 0.826 for the spherical surface to

0.954 for the hyperboloid.

Convex interfaces. The R- and H-plane far-field patterns for a

convex sphere, paraboloid and hyperboloid are shown in Figures 18 and 19

for source locitions 5 and 6. The source locations 5 and 6 were chosen

based on (4.30). Source 5 produces a divergent axial pencil in medim 2,
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Figure 13. Axial far-field variation with source position for a concave
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whereas source 6 produces a convergent exial pencil; the behavior in th%

non-axial direction is governed by the type of the interface. Thus, ns

may be seen from figures 18 and 19, the far field in the axial direction

through the spherical interface has a peak for source 6 and a dip for

source 5. This is also the case for the paraboloid. However, this

behavior is not observed in the hyperboloidal pattern.

For all the convex interfaces, the variation of EN as a function of

0 in (4.41) is predominantly determined by the radius of the Gatsioin

curvature, /R 2 1 R2 2 , and to a lesser extent by T or a.

Ray Pictxre. The H-plane pattern dua to source 6 for a conve"

sphere is given in Figure 19. The correspouding ray picture is shown

in Figure 20. We launch 6 rays at 4° apart in the upper half x-z p3ane

(x > 0). The transmitted rays are first convergent, and after crossing

the caustic surface, become divergent. The incideat rays in the upper

half x-z plane within a 200 angle give rise to transmitted rays in the

lower x-z plane (x < 0) within a 13.50 angie. There tse two caustic

surfaces associatel with the transmitted rays. The intersections of

the caustic surfaces and the x-z plane are indicated by crosses and dots.

Similar ray pictures can be drawn for the other cases aleo.
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F. Conclusion

for the refractior. ,roblam sketched ina Figure 7. the final geouetrical-

optici solutions fni the transmitted field and the reflected field are

given in (4.4). They are applicable under rther general conditions,

namely, the dielecf.ric interiace dts-ribed in (4.1) is arbitrary, and the

incident f•.ld in (4.2) irom a point source is arbitrary. A major step

ir calculatf.r.e these sou'.utio.is is the evaluation of the divergence factors

tn (4.8) arv (-4.9), vidch involves tre intriA operation dew:ribed by (4.21)

and (4.22'. Strictly spciking, the present Aolution is valid in the high-

frequency limit. w - ; hewsvr, practical emperience has shovn that

sotitions of the present type urq reaao.uahly accurate as long as the

radii of curvaiti,'e of the dielectric interface are in the order of a

wa'elength or Tore.
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V. WAVE TRANSMISSION IMROUGH A SPHEJ'RCAL DINlUCTRIC SKELL

A. Introduction

One of the fundamental problems in electromagnetic theory is the

transmission of a spherical wave through a dielectric shell. This problem

has numerous applications in antenna radouss, electromaguetic shielding, and

scattering. It appears that solutions to this problem are available only

for the special case where the shell is an infinite dielectric half space.

That case was first studied by Soerfeld in 1909, whereas later research

was summarized in a book by Brekhovskikh (Chapter IV of [12]). In this

chapter, we consider a more general case, namely, the shell has two

spherical boundary surfaces. Unlik. the Sommerfeld's problem, our case

does include the effects of the shell's zurvature and thickness. Therefore,

a its solution should be of more practical interest.

To solve our problem rigorously, the spherical wave expansion may be

used. However, due to the fact that the source location and the two

dielectric surface centers do not coincide, the translaticual addition

theorem for vector spherical wave function [131 must be used. (Our problem

is roughly comparable to scattering by three dielectric spheres.) This

theorea leads to a complex series, which makes it very difficult to generate

numerical results. In this paper, we use the geometrical optics theory (CU)

141, 1141 to calculate the transmitted field in the problem sketched in

Figure 21. Such a solution, though only approximately valid for high

frequencies, 1. given in a simple closed form. Thus, it allows us

to study the "cause and effect" of the various parameters in a convenient

marner and gain physical insight.
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B. Solution for Concentric Spherical Shell

Let us consider the wave transmission problem in Figure 21. The

boundary surfaces of the dielectric shell are two concentric spheres

with radii R and R2 (both positive), and with a cosmon center at Q.

The point source at 0 mite a spherical wave described by (for exp jwt

time convention)
-Jk~r

)P(9,.)e + Q(0,4)#) (5.1)r

Bere, (r,0,4) are spherical coordinates of r with origin at 0. Functions

P and Q describe the radiation pattern of the source. The wave nmber

k0 -2w/A 0 - w(OOC0 )1/2 is that of free space. By using GO [4], (14),

the transmitted field at an observation point 3 is to be determined.

Without loss of generality, ve semsm that point 3 . a in the (x,z)-plane

with rectangular coordinates (3.3,0,z3).

A. Ray Tracing. In accordance with Snell's law, we trace a ray

from source point 0 to observation point 3, via refraction points I and

2 (Figure 21). Clearly, all four points, 0 to 3, lie in the same

(xz)-plane. For a given launching angle 6 of the ray and the distance

c, the other geometrical parameters can be determined from the folloving

relations:

sin a4 (d/R 1 )sin 8 a - R fsin(O -
1 1 1

sin. -n sin 2 ' sin a . (R /R ) sin M

4 t - t ) t Mi
b =R [sin(* a Wsin a , sin 6- an sin

2 2

x3  a sin + b sin(e a- + a) + c sin (a1 + a - a- i 2 +8)
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a a coo 2 + b oo (0 - a + t) + o(a+ -a - C . )+
2 aceiu ~~- 1+s 1j--co 1  2 1 2

Thts, for a given (6,c), we can determine the position of point 3

straightforverdly. On the other hand, when point 3 is liven, explicit

formla. do not exist for determining 0. One has to find 0 by trial-

and-error.

B. Field on the Ray. The present vector field problim can be

decomposed into two ecalar ones" one with the electric field vector

perpendicular to the plane of incidence ( E ) and the other with

the electric field vector parallel to the plane of incidence (ZI ).

The final solution for the transmitted field f at point i derived by

GO is given by

(3 T1 1 (1
•(3) -- (DIP) .(5.3)

L( (3) T, K9 (1)

The various factors in (5.3) are explained below: T• and T. are the

products of •he -ranasiassion coefficients at points 1 and 2, given by

Tu[+ co al L. coo 02

T1 s {+ ..... ]-lL+ n -.1 (5.4ab)ii
coo aco os a

The two components of the incident field are calculated from (5.1):

-Jk" Q( 914 a 0) (5.5a)

a

E (11 ) a P(O,5 0) (5.5b)
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The derivation of the divergence factor DY in (5.3) requires sow effort.

With the details gi•en in Appendix A, the final result for DF reads

DF a (1 + c1 1 b)" 1 2 (1 + 1C1 2 b)" 1 / 2  + K:2 -1/2 U + K22c)" , (5.6)

At point 1 or 2, it can be shown that the principal directions of the

transm•itted vavefront are precisely the two directions parallel and

perpendicular to the plane of Incidence. Rere (K 1 1 ,K1 2 ) are the two

principal curvatures of the transmitted vavef•rnt at point 1, and

(K21,K22) are those at point 2. They are calculated from the relations

2 t-1[L i 1 t I]

: (ncoo a +coo a 1 (n coo a, - coo a )(57"0)

. I+ ioK1 *L + L(Cos ait -coon ci. (5.7b)

P-121 (Cos.2 a, t-I C(b, + K:-1 1, nco. 2• a: -+ i-CSa oo. Q, A
(5.7c)

K22 " n(b + K12) +j(cos at - n coo a') (5.7d)

4 6. The sign convention of x is as follows. If K is positive (negative),

the normal section of the vavefront is divergent (convergent). For

example, if the transmitted vavefront at point 1 is the same as the

incident spherical vavefrent, we have K K 2 +R1. For a typical

factor in (5.6), the square root convention is

f+IfI. if f Is real
f - (1 ,b)" /2 - (5.8)

ýjIf I, if f is imaginary

When f is imaginary, it means that the ray has crossed a focus oL the

ray pencil. The (+J) accounts for the vell-known (w/2) phase retardation.
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Several general comments about the solution in (5.3) are in order:

(i) For the case where a total reflection occurs (a tor atbecomes complex),1 2

the field in the transmitted region is not an optical field, and the

present ray solution (5.3) is no longer valid. (ii) Except for special

cases, e.g., normal incidence a 1 - 0, the twe curvatures (K 2 1 K 22 ) of

the transmitted wavef ront mnerging from the dielectric shell are not

equal. Thus, the transmitted penci~l is generally astigmatic. (iii) it

is possible that K 21 and/or Kjare negative. Then the divergent pencil

from the source Is transformed into a convergent (focusing) pencil after

propagating through the dielectric shell. (iv) The solution in (5.3)

remains valid for more geometries than the one shown in Figure 21. This

is discussed further in the next section.

* C. Generalization of Final Solution

= For transmission through the concentric spherical shell in Figure 21,

the final solution consists of two parts:

Part A: Ray tracing formulAs in (5.2)

Part B: Field solution in (5.3) through (5.5)

* It can be shown that Part B is valid under a more general condition

(Figure 22), namely,

(I) The centers of the spherical shells Q1and Q2need not

coincide, as long as the four points (0,1,2,3) are coplanar.

(ii) The surfaces of the shell can be z-fther concave or convex.

Looking from the source side, R, (or R 2) is positive if the

surface is concave, and R, is negative if the surface is

I convex.
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Figure 22. General configurations vhere the field solution (2.3) can ;)e

used. Points (0.1.2.3) oust be coplarar.
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Condition (a) is necessary in order Zot the scalar trausmuision coefficients

T and 'Vk in (5.4) to be valid. When the four points (0,1,2,3) are not

coplanar, the perpendicular and parrilel polarizations are nP longer

uncoupled. Than the scalar T, or TO in (5.3) must be r~pl4csd by a

(2 x 2) macrix. Alio, (5.7) becomes more complicated.

For the general configurations in Figure 22, the ray tracing

formulae in (5.2) are not valid. However, by following Snell's law,

the ray tracing, even in the uoat general situ~tion, is conceptually simple.

Thus, instead of working out a sGt of general formula*, we leave it to the

individual problems.

D. Axial Incidence on Symaetrical Shells

To study the features of the present ray solution, let us concentrate

on a special case, where the four points (QIQ 2 ,0,3) are on a straight

line (Figure 23). Then the four curvatures in (5.7) reduce to

• . . 1 +n-
P MKn 1 (5.9a)

11 12 no n R1
S ,R+an(n - l) 1- n a I n

22 21 R -1 2bR + 1 b(n - .) + na R1 12 b + .1L

An irteresting question is when does sl or K become negative (meaning1 •22

a convergent peacil)? This is answered below:

(i) Negative K * The transmitted pencil inside the dielectric

shell is a convergent one when < 0 or

a> Ri -. 0 (5.10)

If R1 > 0 (concave dielactric interface shown in Figure 24a), this is possible

if n < 1. If R < 0 (convex dielectric interface shown in F'ure 24b),
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Figure 23. Ayidl incidence on a syimetrical shell. In this Lxample.
)0 (concave) and R' 0 (convex).
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Figure 24. Condition for a convergent beau inside the dielectric shell.
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this is possible only if n > 1. The distance between point 1 and focal

point F 1 is (K 11 )"1.

(ii) Negative c 2 2 . The transmitted field in the free-space region

outside the dielectric shell is convergent when K22 < 0. Let us concentrate

on A special case in which the thickness of the dielectric shell is small

so that

b <w K_1 (5.11)

Then K 22 in (5.9b) becomes approximately

PC Z + (n- 1) - !- (5.12)

which is the veil-known equation for the thin lens. (See for example

Eq. (41-1), p. 685 uf [11i. Note the corresponding notationt used in (ill

and here: s - -a. a' -* -K R, - -Rl, and L 2c
: ° ° - 22 ' _ R ' an R 2 .) The cond ition

for a negative K2) under the approximation in (5.11) is

RI&
> R1R2  0 (5.13)

(n - M)(R1 - R2 )

(iii) Far Field: If the observation point 3 is in the far zone

(K 2 2 c >> 1), then DF in (5.6) becomes

alf + (n-i) ab [2 iR +DF "1+ - + (n - 1) 1 + .1 1 -(5.14)

U .I

The first factor in ( } in (5.14) is the divergence factor of a planar

dielectric slab (R1,R2 * ). Thus, the ratio of the electric field at

a far-field point 3 for a spherical shell and that for a dielectvic

slab is
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S-L1t(3) for spherical shel;ll
E t(3) for a slab of same thickaessl

1 (ab 2  - _1  1

RR2 b a a

As a numerical exampie, consider the case in which the iuoer and cuter

dielectric surfacea are counave and concentric (Q- = Q2) with (Rl/b) - 2.

We plot n as a function of (a/b) for n - 0.5 and a - 3 in Figure 25. We

note that n can be substantially different frou unity. When a - 1½, we

have ni 1. Thus, in this interesting special case, the axial far field

through a concentric spherical shell and that through a planar slab

become the sarae. Another interesting special case co2ctirs when DF -.

It means that the peraxial rays emerging from the dielectric shell

(Figure 23) are parallel to the axis so that they focus at the far-field

point at infinity. From (5.14), it is shown that DF if K22 0 or

R - R + b(n - l)/n
11 2

a n -1) R1 [R2 - b(n- 1)/ni (5.16)

Under the thir.-.ens approximacion b Z 0, (5.16) is reduced to the well-

"known len~rker's equation (see Eq. (41-2), p. 685 of [11]). in the

antenna radome application, (5,16) is useful in Lhe determination of the

enhancement of the antenna main beam.

(iv) Multiple Reiraction: For a given source point 0 and observaticn

point 3 in Figure 21 or 22, we can trace two types of geometrical optics rays.

The first type is the direct ray from 0 to 3 without going through internal

reflections in the dielectric shell. its field solution is given in (5.3)

which, of course, is the main contribution. The second type contains

rays which bounce one or more times inside the .hell before reaching point 3.

We now consider the contributiou of such multiply refracted rays. For the
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Figure 25. Transmitted field E. transmitted through a spa.erical shell

ncrmalized by Eb which is that through a dielectric slab.
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aiial incidence case (Figure 23), let us further specialize toe geometry

by setting (R1 ,R2) -• . The dielectric ihell becomes the slab shown in

Figure 26, and the field on the direct ray calculated from (5.3) reads

it( 3) - •i(l) e 0(nbc) a + IT_ (5.17)

bia +
whet T i the product of che transmiision coetficiente at points 1 and

2 (Figure 26a)

T -T T n1E + (1/0) (5.18)

In a sitmitar manner, we can calculate the field on the multiply refracted

rays (t. twice internally refractU4 ray is shown in Figure 26b). Super-

.i'osing cheir centribitions, we obtain th6 solution for the field &t

point 3 inclwiing the direct and all multiply refracted rays, namely,

"r -jko(Ub+c) -a

•E3I1  I + l e na+ -' ' cJ ,a+(, L•+n "
+ -j2pkonb (A _l 2p na + b + nc.

n p n+J 1 n + U7p + 1A)h n

* ~Uder the condition

(a +- c) a (far field), or b - 0 (thin slab) (5.20a)

the series in (5.19) can be suind up in a clcssd tor" witt- the result

[Et(3)}a)l rays - ji(1) •k 0 (nb+c) [a + -b fnc ab

when Tslab is recognL.ed as the transmission coefficient of the slqb

6)

I J1
•. 2•



I

II

(b) 3

Figure 26. Singly and doubly refr*ncted rays through a dielectric slab.



TT 1 1 1 (5.20,-)
7 slab 1 - -r p(-J2konb)

Comparing (5.20b) witt (5.17), U note the effecc. of the amultiply refracted

rays is accounted for by replacing T by Tslab* Uhen the condition in

., (5.20a) is not met, we must eva2&1te (5.19) numerically. Let us define

an error te'rm

11 t( 3 )l includiul p multiply refracted rays

6 a - 1 100% (5,21)

{ t(3)j including all multiply refracted rays J

In 7igure Z7, we plot S0 (including no multiply refracted rays) and 6

(including one uauJtiply iefracted ray) vd. u for b - r.75 10 And

(a + c)/b - 4. Several ob,'ervations are made. (a) For commonly used

values of n (between 1 and 3), the error 60 is 131 or less except at

resonances. A r~sonance occurs when all multiply refracted rays emerging

from the slab are in phase with the primary ray. Fcr the configuariou

i' Figure 26. the resonance cundit4on is

(nkob/iv) - (2nb/Xo) - a positive integer . (5.22)

For an obliquely incident ray and/or a curved slab, the zonditcn for

resonance is rarely satisfied. Thus, generally speaking, the error for

neglecting the uultiple refraction is rovxghly 10%. (b) Errors 6 ad 61

have about the same order of magnitude. Thus, the inclusion of the first-

order multiply refracted ray does not in general improve the accuracy -f

the solution.
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Figure 27. Error introduced by neglecting all or all except one multiply
refracted ray in a dielectric slab.
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E. Numerical Results

(a) Radome. Consider a dielectric spherical radome with an inner

radius 20 AO, a uniform thickness 0.5 a0 And n - r5, as shown in Figure 28.

The y-polarized source is located at points 1, 3, or 4, and its radiation

field in the K-plane is given by

-jk 0 r
(r,Oo - w/2) •y coo (1.5 6)] . (5.23)

r

The transmitted field is calculated from (5.3). For an observation point

in the K-plane and in the far-field zone (x - 0 plane and c i in Figure 21),

we may rewrite (5.3) as

-jk rit ko

(.) • y p (6)1 r (5.24)
r

where r is the distance from point 0 to point 3 (Figure 21). We plot pt (8)

as a function of 6 in Figure 28. Generally speaking, the radome modifies

the radiation field gently, as expected.

(b) Lens I (Double Concave). Unlike the above radome, a dielectric

lens may modify the incident field drastically. Let us consider Lens 1,

2drawn approximately to scale in Figure 29. The source is 2 ý 0 avey from

the lens, and is y-polarized. Let us concentrate on the field in the

H-plane (x-z plane). In Figure 29, we launch 4 rays 2 apart. The outside

ray (at 8 - 6*) suffers total reflection at the second face of the lens,

and is not transmitted into the free space region (ve ignore multiple

refractions). We assume the incident field from the source is confined
A
A to a cone (a beam). In the x-z plane, it is given by

F.i(x,O,z) = ei~ { , if (5.25e y1 i e (5.25)
( ) r , if 0 > 0
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In the present case (Lena 1), we choose - 5,5e. After transmission

through the lens, the rays become more divergent, and they are spread

over an angular region of about 8 , 53.5*, which is considerably wider

than the incident angular spread (e < 5.5e). At an observation point

(rOo - 0), we express the transmitted field as

it~rO a ~ Q (,8
t(r,6,0) r . y Qt(r,6) (5.26)

qt i Qt

In the absence of the lens, Q 1 for e < e and Q -0 for6> e

With the lens present, we plot Qt.r,O) as a function of 8 for r - 2 x 103 A0

in Figure 30. Note that the transmitted field is such weaker (12% or less)

than the incident field becer se of the wider spread of the transmitted rays.

I, t
For the present case, Q (r,6) is only very weakly dependent on r, as

long as r >l110 X.6 Thus, the transmitted field in (5.26) it- h far
• zone is approximately a spherical wave with an anguler pattern Q . Every

transimitted ray has two foci. Their distances behind the second face Z2
-o es-l2-2

of the lens are (K21) and (K22), which say be calculated from (5.7).

In particular, ('2K) is for the normal section of the wavafront in the

plane of incidence (x-z plane), whereas (K 2 2 ) is for that in the

4 perpendicular plane (defined by the y-ax:.s and the ray direction). For

the third ray (incidtnt 8 - 4) in Figure 29, we calculate fros (5.7) that

-(K 21)-I +0.21 X0 (K22)-I -+0.375 A.0' (5.27)

We mark the position of the focus corresponding to K 2 1 by a cross in
.24

Figure 29. The distance between A and the cross is (K21) . The trace

of the two sets of foci is shown in Figure 31. They are curves on the

two caustic surfaces of the transmitted wavyfront (intersection of caustic

surfaces and the x-z plane).
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(c) Lens II (Double convex). Thw geometry of Lens ii and its ray

picture are shown in Figure 32. The incident field is given in (5.25) with

0- 10. The .ransaittod field in the 4-plane is expressed in (5.26), where

Q (trO) is again very weakly dependent on r in thQ far sane and is plotted

in Figure 30. We note that the incident 1O-beam is now spread into a

67W-beam after transmission through Lens II. The peak value of the

transmitted field is about 241 of the incident field at the same far-field

location. The caustic curves are shown in Figure 31.

(d) Lens III (Convexo-Concave). The geometry of Lens III is shown

in Figure 33. The radii (R,R 2 ) of the lens and the source distance

satisfy the lensmaker's equation in (5.16), so that the transmitted rays

near the axial direction are almost parallel and focus at a point at

infinity in the axial direction. The incident field is given in (5.25)

with 6- 12'. The I-plane transmitted field it s expressed in (5.26),

X where Qt (rO) varies drastically from the near field zone up to r - 100 X

as seen from Figure 34. Beyond r - 100 X09 the beam becomes narrower, and

the peak becomes higher with the increase of r. It is well-krown that

the exact value of the beam's peak (on a caustic surface) cannot be

predicted by the present geometrical optics theory. It can be calculated

from, for e.g., the Huygens-Green formula described in p. 107 of [151.

The caustic curves are shown in Figure 35.
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F. Conclusions

For A given incident field in (5.1), a geometrical optics solution of

the transmitted field through a spherical dielectric shell (Figure 22) is

given in (!.3) through (5.7). The present solution is an approximated one.

We stunarize its validity and limitations below

(i) Because ray techniques are being employed for the analysis

pre3ented herein, the radii of curvature should be large

in terms of the incident wavelength in order for the results

to be valid. As in all ray-optical solutions, our solution

fails when the observation point is near the caustic surfaces

of the transmitted wavefront,

(ii) The solu'ion given in (5.3) and (5.7) is valid only for

spherical shells, and when four points (0,1,2,3,) in

Figure 22 are coplanar. These two limitations can be relaxed.

In fact, an explicit GO solution, (which is very similar to

the present one,) for an arbitrarily curqed shell, and

arbitrery source and observation points is given in [5).

(iii) Cur 3olution includes only the contribution from the first-

order refracted ray (a direct ray from the source to the

obsevration point witha'-it internal refractions inside the

dielectrLc shell). It has been estimated that, except at

"V"resonances"e which rarely occur for curved shells, the

"error of neglecting higher-order refracted ray% is roughly

13% for n - /c in the range 1 to 3. It should be pointed
r

"•I out that the higher-ordef refracted rays can be calculated

in exactly the same manner as the first-order refracted
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ray by using the formulas derived in this work and in (5].

It is only a matter of bookkeeping and computer time in

doing the numerical calcu:.ations.

(iv) For transmission through a curved dielectric nhell, the

major field contribution, of course, comes from the refracted

rays which are studied in this paper. However other diffraction

processes exist which may not be conveniently fitted into ray

descriptions, and their contribution may be significant under

certain conditions. An example Is the modal fields guided by

the curved dielectric shell. Efforts to understand its behavior

in canonical problems have been initiLted [16].
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VI. ARRAY COVERED BY RADOME

In this chapter, we study the radiation pattern of a linear array of

eleven point sources enclosed in a radome. The array elements are arranged

symmetrically along the x-axis with a half-wavelength spacing as shown in

Figure 36. The element pattern is assumed to be of the form

-ik0r

Pi ! - [sin * e + cos * *J cos 8 • (6.1)r

To calculate the array pattern, rays are traced from each source through

the radome as discussed in Chapter I. When the ray tracing is done, there

are two options available in calculating the far field: (a) we can calculate

the transmitted field E3 over a planar surface Z3 Just o-atsizIe tha radome

and then integrate this field to get the far-field pattern; (b) we can push

the surface to infinity and calculate on this surface directly, thus3 3

avoiding the integration step-this is kncwn as the direct ray method.

Though, in general, both methods do Sive identical results, the second

method becomes less accurate if the far-field point happens to be in the

vicinity of the caustic surfaces of the transmitted wavefront. However,

one does not usually confront such a situation in practice. The details

4 of the calculations using these two methods may be found in [5],

Once the far-field pattern of each source is obtainied, the sum pattern

is obtained by adding the patterns of the individual elemwants. A progressive

phase shift is introduced among the elements to enable beam scanning. In

the results to follow, we pce3ent the H-plane (x-z plane) sum patterns. Thus,

restri.cting ourselves to this plane, the incident field in (6.1) reducen to
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-jk0 r

_ r - COB c.(6.2)
r

The total transmitted field, sumed over cll the sources, may then be

represented by

) ejkr +6 et 1 (0 ) e J(n-i)(kdsineg+) (6.3)Eu r 1 IE(0)I nn=4

where IEt(e)tn represents the magnitude and *U(0), the phase, of the trans-
tn

mitted field due to the nth source, d in the element spacinS, and a is

the inter-eleaent phase shift.

Array patterns were calculated for four types of radomes as specified

in Table I. Two of the radomes were paraboloids and two were tangent

ogives.

(a) Radoze A: This is a paraboloidal radome c~f relative dielectric

constant 2.5. The inner and outer surfaces of this radome were generated

by

: z/X0 0 50 - (x2 + y 2)/(8MN) (6.4)

and

zlx0 50.25 - (x2 + y2)/(8.16X)2 (6.5)

respectively. The geometry of this radome, along with the eleven element

array, are shown in Figure 36. The H-plane element patterns through the

radome are shown in Figure 37. The l-plane sun patterns are shown in

Figures A8-42 for different scan angles (the scan angles indicated in the

figures are the values for the beam without the radose, measured from

the z-axis).
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TABLE I

LENGTH DIAMETER WALLr (External) (External) THICY.WSS

A 50.25 A 40.50 A x'0
Paraboloid 2.5 0 0 0

B 50.50 X 0 _ 0 A_00_ 0/2.0

C Tangent: 5.7 14.6 6.7 X 0.233 X0
Tangent 0______ 0 0_____

J Ogve 9.3 14.9 X0  6.82 k0 0.176 A0

Free-space wavelength
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Figure 43 shows the radome boresight error for this radoms. The bore-

sight error is the difterence betveen the beam maximum with and without

tie radome ((beau maximma with redo.e) - (beam maximas without radon*)).

It may also be observed from Figures 38-42 that, as the scan angle

increases, the gain decreases because of the decrease in the effective

aperture with increasing scan angle. Figure 44 shows this gain variation.
Observe that in the presence of the radome the uaxi*wA field strength drops

such faster. Also, around the tip region where the curvature is the highest,

the maximm field strength decreases faster, and then levels off at higher

s'an angles.

(b) Radome B: This is also a paraboloidal radome of c r 2.5, but

the outer surface in this radone was configured so as to make the curvature

in the tip region very close to the critical curvature (see Figure 30, (51).

thus resulting in a greater focussing action in the z-direction. The inner

surface was obtained from (6.4) and the outer surface was obtained from

z/ 0 - 50.5G - \x2 + y2 )/(7.925AO) . (6.6)

The geometry of the radore is shown in Figure 45. Observe that the thickness

is maximum along the L.-Psxis and reduces gradually to aero thickness at the

base,

The H-plane sum patterns are shown in Figures 46-49, and the boresight

error curve is presented in Figure 50. The focussing action of this

radome may be clearly observed in Figure 46 - the axial field strength is

1.4 times as large as that without the radome.
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(c) Radeases C 46d D1 These are tangent ogive radomes used in sisailes.

The geometrical configuration is given in Figure 51. Dadome C has gr 5.7

&ad radome D *r S 9.3. It may be observed from figure 51 that the radave

has a discontinuity in the s-direction. In practice, this disc•ntinuous tip

region in replaced by a smaoth curved surface. Iowever, In our calculations,

ele modification wes not introduced. The field along the 3-axil Vas

calculated by Interpolation.

Tha K-p3lae su oatterns for rataum C are presented In TiStiree 52-57,

and the corr:esponding borseliht error curvy it shown In Figure A. The

:atterns tot radowe D are in Flgurce 59-64. The Soresight error curve is

shown in Figure 65. It my oe observed from these figures that the natterns

for smoll scan anglea are not generslly good. Alseo, the boresight error

at mamll scan angles is quite high. This behavior is not usually observed

in practical radomes for two reasons;

(I' ! i'ractice. the *ntenm, v u*ually o rýtlector antenns or a

plannar array of caoniderebly karge number of leoments, whereas

In our model, w-s have only elevsa point sources A0/2 apart.

If one includes A sufficient numbst of point sources so as to

faithfully rAPrTNOnt a given practical antenna, there will be

consider~b~e hangeA in t.e *us pstterns and the boresight error

curves.

(ii) The second reasoo has sowethiug to do with the tip region.

Figues 64 s!avo a vimusnt olive and b paraboloidal radom of

the same size, It may be observed that the tip region in the

tangent ogive Ls very steep whereas in the parabuloid the

surface chrttes jore amoothly.

In •Snsral, the patterns improve at larger scan angles, as does the

boresight error.
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APPENDIX A

DERIVATION OF EQUATION (5.6)

Referring to Figure 21, the curvature matrix [4], [10] of the incident

spherical wave may be expressed as

Q4 a (A.1)

The curvature matrix of the inner surface of the radome (El) is

Q . (A.2)

From the knowledge of these two curvature matrices, the curvature matrix of

the refracted ray 1-2 may be expressed as [4]

Q* (8 8[eQ8e1/n + (Cos at- Cos a Q (el)"1 (A.3)

where 8a 6 are coordinate transformation matrices given by

1

Cossa 0

1 (A.4)

a -(A.5)

Simplifying (A.3), weobtain

*1 01



Q, o (A. 6)

0 K12 .

where Ko11 and K12 are defined in (5.7,A.

The curvature matrix of the wavefrout incident at point 2 is given by

i t (q1)-1

IN + b ,(A.)

where I is the identity matrix. The curvature matrix of the transmitted

wavefront at 2 can be calculated aimilarly to that at 1. The final result

is

Q" t 2 (A.8)

0 22

where K and ic, are defined in (5.7).

1 ,
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